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1 Introduction

It is a well-known result from literature on mathematical finance that the price

of a perpetual American option on an underlying asset whose value can be char-

acterized as a stochastic process coincides with the value of an optimal stopping

problem for this process (see, for example, Karatzas and Shreve (1999) pp. 54–

87 and Øksendal (2003), pp. 290–298). Such option prices, while naturally of

interest in themselves, can also be used as upper bounds for prices of American

options with finite expiration dates. Thus, their role is of importance from a

risk management point of view as well. Perpetual optimal stopping problems

arise quite naturally also in the real options literature on the valuation of irre-

versible investment opportunities (see Dixit and Pindyck (1994) for an extensive

textbook treatment of this theory). In that modeling framework the investment

decision is usually interpreted as an opportunity (but not obligation) to obtain a

stochastically fluctuating return in exchange from a payment (sunk cost) which

may or may not be stochastic as well. Given the considerable planning horizon

of the valuation of real investment opportunities, the time horizon is typically

assumed to be infinite and, consequently, the considered optimal timing problem

of the investment opportunity is assumed to be perpetual.

When the dynamics of the underlying process are characterizable via an Itô

stochastic differential equation of form

dXt = µ(Xt)dt + σ(Xt)dWt (1)

with W a standard Wiener process, the stopping problem has been widely stud-

ied by relying on various techniques. The probably most usually applied ap-

proach is to rely on variational inequalities or the classical Hamilton-Jacobi-

Bellman approach due to its applicability in a multidimensional setting as

well (cf. Øksendal (2003) and Øksendal and Reikvam (1998)). In the one-

dimensional setting there are, however, several different techniques for analyzing

the perpetual stopping problem. The most general approach is probably pro-

vided by studies relying on the integral characterization of excessive functions

for diffusion processes and the Martin boundary theory (cf. Salminen (1985)
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and Borodin and Salminen (2002), pp. 32–35). Alternatively, the considered

problem can be analyzed by relying on the relationship between functional con-

cavity and r-excessivity along the lines of the pioneering work by Dynkin (1965)

(Chapters XV and XVI) and by Dynkin and Yuskevich (1969) which has been

subsequently applied within a general optimal stopping framework in Dayanik

and Karatzas (2003). A third technique for studying the perpetual optimal

stopping in the linear diffusions setting is provided by the approaches relying

on the well-known relationship between excessivity and superharmonicity with

respect to first exit times from open sets with compact closure in the state space

of the considered diffusion (cf. Dynkin (1965), Theorem 12.4). In such case, the

optimal stopping problem is reduced to the optimization of arbitrary boundaries

and, therefore, can be analyzed by relying on ordinary nonlinear programming

techniques (cf. Alvarez (2001) and Alvarez (2004)).

More recently, the shortcomings of continuous models driven by Brownian

motion have been discussed extensively and more general models allowing dis-

continuities have been studied to a considerable extent. The most simple gen-

eralization of the traditional continuous models is probably achieved by jump

diffusion models, that is, by models allowing the driving noise to be a Lévy

process. Lévy processes can be used to construct more realistic models of finan-

cial quantities, as they are able to accommodate jump discontinuities and the

leptokurtic feature of return distributions, unlike the Gaussian models based

on Brownian motion and normal distribution. For a taste of the aforemen-

tioned considerable amount of research on pricing American options and optimal

stopping in Lévy models, see (for example) Gerber and Landry (1998), Gerber

and Shiu (1998), Duffie et al (2000), Mordecki (2002a), Mordecki (2002b), Bo-

yarchenko and Levendorskĭi (2002), Alili and Kyprianou (2005) and Mordecki

and Salminen (2006).

In risk management a criticism often leveled against the continuous models

is their inability to model downside risk: the possibility of an instantaneous

drop in the value of an asset. In real life markets phenomena closely resembling

such instantaneous drops are often observed (for example, sudden unanticipated
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deterioration of stock market values, credit defaults, etc.). An empirically ob-

served fact is that in the stock market reactions to negative shocks are usually

significantly stronger than the reactions to positive ones (this is the celebrated

”bad news” principle originally introduced in the seminal study by Bernanke

(1983)). Hence, in light of this asymmetric nature of the reaction to unan-

ticipated shocks, a prudent approach is to disregard possibilities for positive

surprises and to take fully into account the possibilities for disadvantageous fu-

ture occurrences. Consequently, a one-sided model that allows instantaneous

downward jumps can be seen as a completely acceptable model from a prudent

risk management point of view.

Motivated by our previous arguments, it is our objective in this study to

consider a spectrally negative one-dimensional jump diffusion, say X, with a

state space I = (a, b) ⊆ R and natural boundaries a and b. Interestingly, we es-

tablish that given some extra conditions on X, the value of the optimal stopping

problem has a representation in terms of an ordinary nonlinear programming

problem (cf. Alvarez (2001) and Alvarez (2003) for an associated result in the

continuous diffusion case). This representation is valid for continuous, almost

everywhere differentiable reward functions g satisfying the condition

g(x)/ψ(x) has a unique maximizer x∗ ∈ I and is non-increasing for x > x∗,

where ψ is an increasing solution of the integro-differential equation Gψ = rψ

with G being the operator representing the infinitesimal generator of X. The

representation is proved using the viscosity solution approach and, thus, smooth

pasting may not necessarily hold. We find that given a jump diffusion for

which the representation is valid in a certain class of reward functions, any

strictly increasing C2 transformation also has a similar representation, albeit

for a different class of reward functions.

For the sake of comparison, we consider an optimal stopping problem of an

associated continuous diffusion process which can be obtained by removing the

pure jump part of the considered Lévy diffusion. We demonstrate that the value

of the considered jump-diffusion stopping problem can be ”sandwiched” between

the values of two stopping problems which are defined with respect to the as-
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sociated continuous diffusion. This finding is of interest since it can be applied

for deriving bounds for the exercise threshold of the considered optimal stop-

ping problem for the underlying jump-diffusion. Moreover, since the restricting

values defined with respect to the continuous diffusion differ only by the rate at

which they are discounted, our findings indicate that under some circumstances

the downside jump-risk can be directly incorporated into the continuous diffu-

sion case by adjusting the discount rate appropriately. This characterization is

also important in the analysis of the impact of downside risk on the optimal stop-

ping policy since according to this representation the optimal exercise boundary

is lower for the underlying jump-diffusion than for the associated dominating

continuous diffusion process provided that both valuations are discounted at the

same rate.

We also consider the comparative static properties of the optimal stopping

policy and its value and present a set of relatively general conditions under

which the value of the considered problem is monotonic and convex. Along

the lines of previous studies considering the optimal stopping of linear diffu-

sions, we find that in such a case higher volatility increases the value of the

optimal strategy and expands the continuation region where stopping is subop-

timal by increasing the optimal exercise threshold. These observations are of

interest since they indicate that higher volatility decelerates the rational exer-

cise of investment opportunities by increasing the option value of waiting in the

presence of jump diffusions as well. We also analyze the impact of increased

jump-intensity on the optimal policy and its value and find that if the value is

convex, then higher jump-intensity increases the value of waiting and deceler-

ates rational exercise by expanding the continuation region. These observations

emphasize the potentially significant combined negative effect of jump-risk and

continuous systematic risk on the timing of irreversible investment policies.

The contents of this study are as follows. In section 2, we present the model

and the assumptions used throughout the study. The representation of the stop-

ping problem in terms of an ordinary optimization problem, is stated and proved

in section 3, together with the result on the validity of the representation for
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increasing C2 transforms of Lévy diffusions admitting the representation. Some

useful inequalities related to the associated continuous diffusion are presented in

section 4, and Section 5 is devoted to comparative statics. Explicit illustrations

are given in section 6, and section 7 concludes.

2 The Setup and Basic Assumptions

Let (Ω,F ,P) be a probability space carrying a standard Wiener process W =

{Wt} and a compound Poisson process J = {Jt} with intensity λ and some

jump size distribution. We can define a finite activity Lévy process L = {Lt}
by

Lt = t + Wt + Jt. (2)

We equip (Ω,F ,P) with the completed natural filtration F generated by this

process. The natural filtration of a Lévy process is right-continuous, and thus

the completed filtration satisfies the usual hypotheses (see Protter (2004) The-

orem I.31). We consider the optimal stopping problem

V (x) = sup
τ∈T

Ex

{
e−rτg(Xτ )

}
, (3)

where X = {Xt} is the jump diffusion driven by L with initial value X0 = x ∈ I

and dynamics given by the stochastic differential equation

dXt = α(Xt)dt + σ(Xt)dWt +
∫

S(m)

γ(Xt, z)Ñ(dz, dt). (4)

In the above equations Ñ(U, t) is a compensated Poisson random measure,

S(m) ⊂ (0,∞) is the support of the corresponding Lévy measure m and T
is the set of all F -stopping times. Note that the driving jump process is, as a

compensated compound Poisson process, a martingale – this is no restriction,

as non-martingale jump dynamics can be reduced to the form 4 by adding and

subtracting a correction term on the left hand side of the stochastic differential

equation. We denote the expectation of the jump size by m. The state space

of the Lévy diffusion is an open interval I := (a, b) ⊆ R where a and b are nat-

ural boundaries (not attainable in finite time). We assume that the coefficient
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functions in 4 satisfy the usual conditions for the existence of a unique adapted

càdlàg solution X ∈ L2(P) without explosions. In the case of an infinite inter-

val I, sufficient conditions are at most linear growth and Lipschitz continuity,

see Øksendal and Sulem (2005) Theorem 1.19. The global Lipschitz condition

guarantees that the explosion time of the process is a.s. infinite (see Protter

(2004) Theorem V.40). In addition, we assume that the coefficients have locally

Lipschitz first derivatives.

The solution of the optimal stopping problem is known to be closely related

to the integro-differential equation defined for f ∈ C2
0 (R) by

Gf = rf, (5)

where (Gf)(x) is the generator of X given by

1
2
σ2(x)f ′′(x) + α(x)f ′(x) + λ

∫

S(m)

{f(x + γ(x, z))− f(x)− f ′(x)γ(x, z)}m(dz). (6)

Integrating the last two terms of the integrand in (6) and using the notation

(Gr) := (G − r) we can write (5) equivalently as

(Grf)(x) =
1
2
σ2(x)f ′′(x) + α̃(x)f ′(x)− r̃f(x) + λ

∫

S(m)

f(x + γ(x, z))m(dz) = 0, (7)

where α̃(x) = α(x)− λ
∫
S(m)

γ(x, z)m(dz) and r̃ = r + λ.

Next the assumptions used throughout the rest of this study are stated. We

denote by τS the first exit time of the process X from an open set S ⊂ R. The

following additional assumptions concerning the dynamics of X are made:

X1. τ(a,x) = inf{t ≥ 0 : Xt ≥ x} < ∞ Px-a.s. for all a < x < x < b;

X2. a− x < γ(x, z) ≤ 0 for all (x, z) ∈ I × S(m).

Assumption X2 implies that X has only negative jumps and that X cannot

reach the lower boundary a by jumping. Thus Xt ∈ I for all t ≥ 0.

The reward function g is assumed to satisfy

g1. g(x) = max(g̃(x), 0) with g̃ increasing, continuous and C2 on I \ N for

some finite set N ⊂ I with finite limits g̃′(x+), g̃′′(x+) for x ∈ N , and

such that g̃(a) ≤ 0.
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Note that assumption g1 is satisfied by the reward of a standard American call

option, in which case g̃(x) = x−K for some strike price K. In fact, the imposed

reward structure is natural for an option type contract, where we can always

avoid losses by not exercising our option if the reward is negative.

We make the following assumption on the operator Gr:

A1. Grψ = 0 has an increasing solution ψ ∈ C2(I) such that ψ(a) = 0.

Noteworthy is that it is not at all clear whether a given integro-differential

equation has an increasing solution – the validity of assumption A1 needs to

be carefully checked in each case. Finally, we need to make two assumptions on

the behavior of the quotient g/ψ, namely,

Ag1. there exists a unique maximizer x∗ ∈ I of g(x)/ψ(x) and g(x)/ψ(x) is

non-increasing for x > x∗.

Ag2. there exists x̂ < x∗ such that, for all x ≥ x̂ such that g is C2 at x,

(Grg)(x) ≤ −
∫

C(z)

{
g(x∗)
ψ(x∗)

ψ(x + γ(x, z))− g(x + γ(x, z))
}

ν(dz),

where C(z) =
{
z ∈ S(m) : x + γ(x, z) < x∗

}
.

In a sense, the last assumption is needed to guarantee the r-excessivity of the

value function V in the stopping region x ≥ x∗, as will be seen in the proof

of theorem 3.3 later on. In most cases, this assumption is rather difficult to

verify otherwise than numerically on a case by case basis. It should be noted

that assumptions Ag1 and Ag2 have implications for the form of the reward

function g: the set of allowable reward functions will depend on the behavior of

function ψ.

3 The Representation Theorem

In Alvarez (2001), it is shown that (modulo some conditions) if the process X

is a continuous linear diffusion the value function of the stopping problem (3)

can be expressed as

V (x) = ψ(x) sup
y≥x

{
g(y)
ψ(y)

}
,
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where ψ(x) is the increasing fundamental solution of the differential equation

Aψ − rψ = 0, where A is the second order differential operator coinciding with

the infinitesimal generator of X. Our main theorem states that this representa-

tion is also valid for a jump diffusion, provided that the assumptions of section

2 are satisfied. Before stating the main result, we present some auxiliary results

necessary for the proof of the theorem. At this point, we introduce the notation

v(x) := ψ(x) supy≥x

{
g(y)
ψ(y)

}
and consider the properties of this function.

Lemma 3.1. Assume that g/ψ is continuous on I with a unique maximum

point x∗ ∈ I and non-increasing for x > x∗. Then v(x) is a continuous function

of x and we have the representation

v(x) =





g(x), x ≥ x∗

ψ(x) g(x∗)
ψ(x∗) , x < x∗.

Proof. For a function f := g/ψ satisfying the assumptions,

sup
y≥x

f(y) =





f(x), x ≥ x∗

f(x∗), x < x∗,

which is continuous if f is. The representation is immediate (multiply the above

equation with ψ(x)).

Lemma 3.1 demonstrates, that under our assumptions the value of the as-

sociated nonlinear programming problem is continuous. Interestingly, as in

studies based on continuous diffusion models, lemma 3.1 characterizes the value

in terms of the exercise payoff received at the exercise boundary and the ra-

tio ψ(x)/ψ(x?) measuring the expected present value of a contract which pays

the holder one dollar at the first date the underlying jump diffusion exceeds a

beforehand fixed threshold level. This observation is expressed in more precise

terms in the following lemma.

Lemma 3.2. Suppose ψ : I 7→ R+ is an increasing solution of Gru = 0 and

a < x < y < b. Then

Ex[e−rτ(a,y) ] =
ψ(x)
ψ(y)

.

8



Moreover, in case ψ(x) exists any other nonnegative and increasing solution of

Gru = 0 is a constant multiple of ψ(x) (i.e. ψ(x) is unique up to a multiplicative

constant).

Proof. Under assumption X1 and the assumed boundary behavior of Xt at the

boundary a, we can apply the Dynkin formula to ψ:

Ex[e−rτ(a,y)ψ(Xτ(a,y))] = ψ(x) + Ex

∫ τ(a,y)

0

e−rt(Grψ)(Xt)dt.

Since ψ solves Grψ = 0 and Xτ(a,y) = y a.s. (because X has no positive jumps

and it never attains a), this implies that

ψ(y)Ex[e−rτ(a,y) ] = ψ(x),

from which the first result follows. To establish uniqueness, assume that ς :

I 7→ R+ is another increasing and nonnegative solution of equation Gru = 0.

By applying a similar argument as above, we find that

ς(x) =
ς(y)
ψ(y)

ψ(x)

which completes the proof of our lemma.

It is worth emphasizing that the strong Markov property of the jump dif-

fusion and the fact that it cannot jump upwards and, therefore, that it can

increase only continuously imply that the function Ex[e−rτ(a,y) ] can always be

expressed as a ratio of the form (8). However, it is not beforehand clear whether

this ratio is always (i.e. for any jump diffusion model) twice continuously differ-

entiable with respect to the current state or not. Hence, lemma 3.2 essentially

demonstrates that in those cases where the integro-differential equation Gru = 0

has an increasing solution, the expected value Ex[e−rτ(a,y) ] can be expressed in

terms of this solution and identity (8) holds. The key implication of this finding

and our main result on the characterization of the value of the considered op-

timal stopping problem as an ordinary nonlinear programming problem is now

summarized in the following.

Theorem 3.3. Suppose X and g are such that X1–X2, g1, A1, Ag1 and Ag2

are satisfied. Then, if the value function of problem (3) is continuous, it has
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the representation

V (x) = ψ(x) sup
y≥x

{
g(y)
ψ(y)

}
, (8)

where ψ is an increasing solution of Grψ = 0.

Proof. We use again the notation v(x) := ψ(x) supy≥x

{
g(y)
ψ(y)

}
and begin by

proving an auxiliary result (Grv)(x) = 0 for x < x∗ (where x∗ is the unique

maximizer of g(x)/ψ(x)) via the following direct calculation:

1
2σ2(x)v′′(x) + α̃(x)v′(x)− r̃v(x) + λ

∫
S(m)

v(x + γ(x, z))m(dz)

= g(x∗)
ψ(x∗)

[
1
2σ2(x)ψ′′(x) + α̃(x)ψ′(x)− r̃ψ(x)

]
+ λ

∫
S(m)

v(x + γ(x, z))m(dz)

= − g(x∗)
ψ(x∗) · λ

∫
S(m)

ψ(x + γ(x, z))m(dz) + λ
∫
S(m)

v(x + γ(x, z))m(dz)

= λ
∫
{x+γ(x,z)<x∗}

g(x∗)
ψ(x∗)

(− ψ(x + γ(x, z)) + ψ(x + γ(x, z))
)
m(dz)+

+λ
∫
{x+γ(x,z)>x∗}

[
− g(x∗)

ψ(x∗)ψ(x + γ(x, z)) + g(x + γ(x, z))
]
m(dz).

For a process with γ(x, z) ≤ 0 the second integral in the last expression vanishes,

and the first integrand is identically zero. Auxiliary result is now proved.

Consider an increasing sequence {xN}N∈N ⊂ I such that x1 > x∗ and xN →
b. Denote τN = τ(a,xN ). If w is a continuous viscosity solution of the variational

inequalities

max
(
(Grw)(x), g(x)− w(x)

)
= 0, x ∈ (a, xN ), (9)

satisfying the boundary conditions

w(a) = g(a), w(xN ) = g(xN ), (10)

then by virtue of theorem 9.4 in Øksendal and Sulem (2005) w(x) = VN (x) :=

supτ≤τN
Ex [e−rτg(Xτ )] for all x ∈ [a, xN ]. Note that the uniform integrability

condition in that theorem is needed to ascertain that w(x) is indeed attainable

(see Øksendal and Reikvam (1998)). In our case this condition need not be
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imposed, as by lemma 3.2 we have, for x < x?,

v(x) = g(x∗)
ψ(x)
ψ(x∗)

= Ex[e−rτ(a,x∗)g(Xτ(a,x∗))],

and for x ≥ x?, v(x) = g(x). Now we show that the function v (or, more

precisely, its restriction to IN := (a, xN )) is a continuous viscosity solution of 9

such that 10 is satisfied, for any N ∈ N.

Since v is continuous by lemma 3.1, it remains to show that v is a solution

of the variational inequality in the viscosity sense. First we establish the sub-

solution property. So let us take x0 ∈ IN and suppose that h ∈ C2(IN ) is such

that h(x) ≥ v(x) for x ∈ IN and h(x0) = v(x0). We have two possibilities:

(i) if a < x0 < x∗, then h(x)− v(x) is a smooth function at x = x0 and has a

local minimum there. First and second order conditions for a local mini-

mum imply then that v′(x0) = h′(x0) and v′′(x0) ≤ h′′(x0). Furthermore,

h(x0 + γ(x0, z)) ≥ v(x0 + γ(x0, z)). But then (Grh)(x0) ≥ (Grv)(x0) = 0,

and the variational inequality

max ((Grh)(x0), g(x0)− v(x0)) ≥ 0, (11)

holds.

(ii) if xN > x0 ≥ x∗, then v(x0) = g(x0) and 11 is satisfied.

Thus, for all h ∈ C2(IN ) and x0 ∈ IN such that h(x) ≥ v(x), for x ∈ IN , and

h(x0) = v(x0), equation 11 is satisfied, so v is a viscosity subsolution of the

variational inequality.

To show the supersolution property of v we take x0 ∈ IN and h ∈ C2(IN )

such that h(x) ≤ v(x) for all x ∈ IN and h(x0) = v(x0). Now we have three

possibilities:

(i) if a < x0 < x∗, then h(x)− v(x) is a smooth function at x = x0 and has a

local maximum there. First and second order conditions for a local maxi-

mum imply then that v′(x0) = h′(x0) and v′′(x0) ≥ h′′(x0). Furthermore,

h(x0 + γ(x0, z)) ≤ v(x0 + γ(x0, z)). But then (Grh)(x0) ≤ (Grv)(x0) = 0,

and since v(x0) ≥ g(x0), the inequality

max ((Grh)(x0), g(x0)− v(x0)) ≤ 0, (12)
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is satisfied.

(ii) if xN > x0 ≥ x∗ and g is C2 at x0, then v(x0) = g(x0) and so the second

half of the left hand side of 12 equals 0. To obtain (Grh)(x0) ≤ 0, observe

that by arguments similar to previous ones, (Grh)(x0) ≤ (Grv)(x0), and

from the definition of v we get then, using assumption Ag2,

(Grv)(x0) = (Grg)(x0)+
∫

C(z)

{v(x0+γ(x0, z))−g(x0+γ(x0, z))}ν(dz) ≤ 0

(see section 2 for the definition of the set C(z)). This implies that 12

holds.

(iii) if xN > x0 ≥ x∗ and x0 ∈ N (i.e. g is not C2 at x0), we still have

g(x0) = v(x0). By (ii), under our assumptions

(Grh)(y) ≤ (Grg)(y) +
∫

C(z)

{v(y + γ(y, z))− g(y + γ(y, z))}ν(dz) ≤ 0, (13)

for all x0 < y < min{xN , xk}, where xk is the point of N ∩ (x0, xN )

closest to x0 . Since g is C2 on (x0, xk) and v is continuous, denoting

limy↓x0 y = x̃, we get

(Grh)(x0) ≤ (Grg)(x̃) +
∫

C(z)

{v(x̃ + γ(x̃, z))− g(x̃ + γ(x̃, z)}ν(dz) ≤ 0. (14)

So 12 holds.

We have established that for all h ∈ C2(IN ) and x0 ∈ I such that h(x) ≥
v(x), for x ∈ IN , and h(x0) = v(x0) equation 12 holds, i.e. v is a viscosity

supersolution of the variational inequality.

We have now proved that being continuous and both a viscosity sub- and

supersolution, v is a continuous viscosity solution of the variational inequalities.

Since by the definition of v and assumption A1 the boundary conditions 10 are

satisfied, the uniqueness result of Theorem 9.4 in Øksendal and Sulem (2005)

implies that v(x) = VN (x) on IN for any N ∈ N. On the other hand,

VN (x) = sup
τ≤τN

Ex

[
e−rτg(Xτ )

] → sup
τ≤∞

Ex

[
e−rτg(Xτ )

]
= V (x) (15)

as N →∞. Thus the increasing sequence of functions {VN} = {v|IN } converges

to V as N →∞ for any x ∈ I such that V (x) is finite. Thus v(x) = V (x).
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The representation of theorem 3.3 implies that if g is continuously differen-

tiable at the point x∗ maximizing g(x)/ψ(x), then x∗ can be solved from the first

order condition for an extremum g′(x)ψ(x)− g(x)ψ′(x) = 0, which is equivalent

to the logarithmic derivative condition Dx[ln g(x)] = Dx[ln ψ(x)]. In this case

the well-known smooth fit condition is satisfied, i.e. the value is continuously

differentiable. However, even if x∗ happens to be a point of nondifferentiability

of g, the representation result holds – necessary conditions for a maximum of

g/ψ are then

lim
y→x∗−

{g′(y)ψ(y)− g(y)ψ′(y)} ≥ 0 and lim
y→x∗+

{g′(y)ψ(y)− g(y)ψ′(y)} ≤ 0,

which imply only that

g′(x∗−) ≥ V ′(x∗−) = ψ′(x∗)
g(x∗)
ψ(x∗)

≥ g′(x∗+) = V ′(x∗+).

It is possible to prove that given a process X such that theorem 3.3 holds

(for a certain class of reward functions) and any sufficiently regular transforma-

tion f(·), the representation is valid for the process Y defined by Yt = f(Xt)

(although the class of allowable reward functions will be different). This is the

content of the next theorem.

Theorem 3.4. Let {Xt} be a stochastic process such that assumptions X1, X2

and A1 are satisfied, and let f be a strictly increasing function in C2(I). Denote

the increasing solution in A1 for X by ψ1. Define a new process Y by setting

Yt := f(Xt). Then Y satisfies assumptions X1, X2 and A1. Furthermore, the

corresponding increasing solution in A1 for Y is given by ψ1(f−1(y)).

Proof. A C2 transform of a jump diffusion is a jump diffusion. Being an in-

creasing function, f maps the state space I = (a, b) of X onto J = (f(a), f(b)),

the state space of Y . Since

Yt = f(Xt) > x ⇔ Xt > f−1(x),

it follows that Y satisfies X1, and as X is spectrally negative and f is increasing,

we have

|∆Yt| = |f(Xt−)− f(Xt− + ∆Xt)|
= f(Xt−)− f(Xt− + ∆Xt) < f(Xt−)− f(a)

13



and thus X2 is satisfied. Because X is assumed to satisfy A1, there exists an

increasing solution ψ1 of the integro-differential equation

µ̃(x)ψ′(x) +
1
2
σ2(x)ψ′′(x) +

∫

S(m)

ψ(x + γ(x, z))ν(dz) = r̃ψ(x).

Let x := x(y) = f−1(y). The transformation ψ̃(y) = ψ(x) = (ψ ◦ f−1)(y) leads

to the integro-differential equation

µ̃(x(y))[x′(y)]−1ψ̃′(y) + 1
2σ2(x(y))

{
[x′(y)]−2ψ̃′′(y)− ψ̃′(y)x′′(y)[x′(y)]−3

}
+

+
∫
S(m)

ψ̃(x(y) + γ(x(y), z))ν(dz) = r̃ψ̃(y),
(16)

which is well-defined since under the assumptions on f , the inverse mapping

theorem guarantees the existence and continuity of x′(y) and x′′(y). Defining

φ(y) := ψ1(x(y))

we can by substituting φ into (16) establish that φ(y) is a solution of (16). As

ψ1 is increasing on I by assumption and x′(y) = (f−1)′(y) = (f ′(x))−1 > 0 on

J by the inverse mapping theorem, we have that

φ′(y) = ψ1(x(y))x′(y) > 0.

So φ(y) is an increasing function, and φ(f(a)) = ψ1(a) = 0, since X satisfies

A1. Thus Y satisfies A1.

4 Useful Inequalities: Sandwiching the Solution

In this section we plan to analyze how the considered stopping problem is related

to two optimal stopping problems of an associated continuous diffusion model.

To accomplish this task, consider now the associated diffusion

dX̃t :=

(
µ(X̃t)−

∫

S(m)

γ(X̃t, z)ν(dz)

)
dt + σ(X̃t)dWt. (17)

It is worth mentioning that this associated diffusion is very useful in assessing

the impact of downside risk on the optimal policy, as the Lévy diffusion X is,

in fact, a superposition of X̃ and a spectrally negative, non-martingale jump

process. As usually, we denote as Ãθ the differential operator

Ãθ =
1
2
σ2(x)

d2

dx2
+

(
µ(x)−

∫

S(m)

γ(x, z)ν(dz)

)
d

dx
− θ (18)
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associated with the continuous diffusion X̃t killed at the constant rate θ > 0.

Along the lines of the notation in our previous analysis, we denote as ψ̃θ(x)

the increasing fundamental solution (i.e. the minimal increasing θ-harmonic

mapping for the diffusion {X̃t; t ≥ 0}; for a thorough characterization of these

mappings, see Borodin and Salminen (2002), p. 33) of the ordinary linear second

order differential equation (Ãθu)(x) = 0. As is well-known from the classical

theory of diffusions, given this increasing fundamental solution we have for all

x ≤ y (cf. Borodin and Salminen (2002), p. 18)

Ex

[
e−θτ̃(a,y)

]
=

ψ̃θ(x)
ψ̃θ(y)

,

where τ̃(a,y) = inf{t ≥ 0 : X̃t = y} denotes the first hitting time of the diffusion

X̃t to the state y. Therefore, the continuity of the exercise payoff yields that

for all x ≤ y we have

Ex

[
e−θτ̃(a,y)g(X̃τ̃(a,y))

]
= g(y)

ψ̃θ(x)
ψ̃θ(y)

implying that

sup
y≥x

Ex

[
e−θτ̃(a,y)g(X̃τ̃(a,y))

]
= ψ̃θ(x) sup

y≥x

[
g(y)
ψ̃θ(y)

]

provided that the supremum exists. In light of this observation it is naturally

of interest to ask whether the discount rate θ can be chosen so as to yield rep-

resentations which either dominate or are smaller that the value of the optimal

stopping problem (3). Interestingly, the answer to this question turns out to be

positive as is illustrated by our following theorem characterizing the relationship

of the value of the optimal stopping problem with the values of two associated

stopping problems defined with respect to the continuous diffusion (17).

Theorem 4.1. For all x ≤ y we have

ψ̃r+λ(x)
ψ̃r+λ(y)

≤ Ex

[
e−rτ(a,y)

] ≤ ψ̃r(x)
ψ̃r(y)

.

Consequently,

ψ̃r+λ(x) sup
y≥x

[
g(y)

ψ̃r+λ(y)

]
≤ sup

y≥x
Ex

[
e−rτ(a,y)g(Xτ(a,y))

] ≤ ψ̃r(x) sup
y≥x

[
g(y)
ψ̃r(y)

]
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provided that the supremum exists. Therefore, if condition A1 is satisfied, then

ψ̃r+λ(x)
ψ̃r+λ(y)

≤ ψ(x)
ψ(y)

≤ ψ̃r(x)
ψ̃r(y)

for all x ≤ y and

ψ̃r+λ(x) sup
y≥x

[
g(y)

ψ̃r+λ(y)

]
≤ ψ(x) sup

y≥x

[
g(y)
ψ(y)

]
≤ ψ̃r(x) sup

y≥x

[
g(y)
ψ̃r(y)

]
,

provided that the supremum exists.

Proof. Applying the Dynkin formula to ψ̃r(x) yields

Ex[e−rτ(a,y) ψ̃r(Xτ(a,y))] = ψ̃r(x) + Ex

∫ τ(a,y)

0

e−rt(Grψ̃r)(Xt)dt ≤ ψ̃r(x)

since

(Grψ̃r)(x) = λ

∫

S(m)

{ψ̃r(x + γ(x, z))− ψ̃r(x)}m(dz) < 0

by the monotonicity of ψ̃r(x). Since Xτ(a,y) = y a.s. (because X has no pos-

itive jumps and it never attains a) and ψ̃r(x) is continuous, this inequality

implies that Ex[e−rτ(a,y) ] ≤ ψ̃r(x)/ψ̃r(y) for all x ≤ y. Analogously, applying

the Dynkin formula to ψ̃r+λ(x) yields

Ex[e−rτ(a,y) ψ̃r+λ(Xτ(a,y))] = ψ̃r+λ(x) + Ex

∫ τ(a,y)

0

e−rt(Grψ̃r+λ)(Xt)dt ≥ ψ̃r+λ(x)

since

(Grψ̃r+λ)(x) = λ

∫

S(m)

ψ̃r+λ(x + γ(x, z))m(dz) > 0

by the positivity of ψ̃r+λ(x). Thus, we observe that Ex[e−rτ(a,y) ] ≥ ψ̃r+λ(x)/ψ̃r+λ(y)

for all x ≤ y. The rest of the alleged results then follow from the nonnegativity

of g(x) and condition A1.

Theorem 4.1 essentially establishes that in the present setting the value of the

optimal stopping problem (3) satisfies the inequality Ṽr+λ(x) ≤ V (x) ≤ Ṽr(x),

where

Ṽθ(x) = sup
τ
Ex

[
e−θτg(X̃τ )

]
,

provided that the sufficiency conditions guaranteeing the optimality of the stop-

ping rule characterized by a single threshold are satisfied. For that class of

problems, Theorem 4.1 also clearly indicates that Cr+λ ⊆ C ⊆ Cr where
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Cθ = {x ∈ I : Ṽθ(x) > g(x)} and C = {x ∈ I : V (x) > g(x)}. This obser-

vation is important since it demonstrates that the optimal exercise threshold

x∗ is dominated by the exercise threshold of the dominating value Ṽr(x) and is

greater than the exercise threshold of the smaller value Ṽr+λ(x). In this way,

the findings of our Theorem 4.1 provide valuable information on the impact of

pure (uncompensated) down-side risk on the optimal decision. Moreover, since

Ṽr+λ(x) ≤ Ṽθ(x) ≤ Ṽr(x) for all x ∈ I, we immediately observe that if the

conditions of our Theorem 4.1 and Theorem 3.3 are satisfied, then there is a

critical discount rate for which the stopping rule coincides in the continuous

and in the jump-diffusion case. That is, there is a θ∗ ∈ (r, r + λ) such that

x∗ = min{x ∈ I : Ṽθ∗(x) = g(x)}.
It is worth emphasizing that the proof of Theorem 4.1 essentially relies on

the fact that if u : I 7→ R+ is a sufficiently smooth and monotonically increasing

function, then

(Ãr+λu)(x) ≤ (Gru)(x) ≤ (Ãru)(x).

Hence, our results clearly indicate that the class of sufficiently smooth monoton-

ically increasing r-excessive mappings for the diffusion X̃t is larger than the

class of sufficiently smooth monotonically increasing r-excessive mappings for

the jump-diffusion Xt which, in turn, is larger than the class of sufficiently

smooth monotonically increasing (r + λ)-excessive mappings for the diffusion

X̃t. This observation is interesting since it directly generates a natural or-

dering for the monotone (viscosity) solutions of the variational inequalities

max{(Gru)(x), g(x) − u(x)} = 0 and max{(Ãθu)(x), g(x) − u(x)} = 0 with

θ = r, r + λ.

5 Comparative Statics

In this section our main objective is to consider comparative static properties

of the value function and the optimal policy and, especially, to analyze the

impact of increased volatility on these factors. To this end, we consider two

jump diffusions of the form (4), X and X̂, which are otherwise identical but
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have different volatilities, σ(x) > σ̂(x). In accordance with this notation, we

denote the values of the associated optimal stopping problems by V and V̂ ,

the associated differential operators as Gr and Ĝr, and the associated increasing

fundamental solutions (given that assumption A1 is satisfied) as ψ and ψ̂, re-

spectively. Our first result emphasizing the role of these fundamental solutions

is now summarized in the next theorem.

Theorem 5.1. Assume that the increasing fundamental solution ψ(x) is convex.

Then
ψ̂(x)

ψ̂(y)
≤ ψ(x)

ψ(y)

for all x ≤ y. Hence,

ψ̂(x) sup
y≥x

[
g(y)

ψ̂(y)

]
≤ ψ(x) sup

y≥x

[
g(y)
ψ(y)

]

provided that the supremum exists. Moreover, if the conditions of Theorem 3.3

are satisfied, then V (x) ≥ V̂ (x) and, therefore,

Ĉ = {x ∈ I : V̂ (x) > g(x)} ⊆ {x ∈ I : V (x) > g(x)} = C.

If the increasing fundamental solution ψ̂(x) is concave, then the inequalities and

inclusions stated above are reversed.

Proof. Applying the Dynkin formula to ψ(x) yields

Ex[e−rτ̂(a,y)ψ(X̂τ̂(a,y))] = ψ(x) + Ex

∫ τ̂(a,y)

0

e−rt(Ĝrψ)(X̂t)dt,

where τ̂(a,y) = inf{t ≥ 0 : X̂t ≥ y}. Since X̂τ̂(a,y) = y a.s. and (Ĝrψ)(x) =(
(Ĝr − Gr + Gr)ψ

)
(x) =

(
(Ĝr − Gr)ψ

)
(x) = 1

2 (σ̂2(x)−σ2(x))ψ′′(x) ≤ 0 by the

X-harmonicity and the convexity of ψ(x), we find that

Ex[e−rτ̂(a,y) ]ψ(y) =
ψ̂(x)

ψ̂(y)
ψ(y) ≤ ψ(x)

from which the alleged results follow by the nonnegativity of the payoff g(x).

Establishing the reverse conclusions in case the fundamental solution ψ(x) is

concave is completely analogous.
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Theorem 5.1 extends previous findings based on continuous diffusions to the

present setting as well and states a set of conditions in terms of the convexity

(concavity) of the fundamental solution ψ(x) under which increased volatility

unambiguously decelerates (accelerates) rational exercise by expanding (shrink-

ing) the continuation region where waiting is optimal. As is clear from this

observation, the sign of the relationship between increased volatility and the

optimal stopping policy is a process-specific property that as such does not de-

pend on the precise form of the exercise payoff as long as the supremum at which

the expected present value of the payoff is maximized exists and constitutes the

optimal stopping rule.

It is worth noticing that the proof of our Theorem 5.1 indicates that the

analysis of the impact of increased volatility on the optimal policy and its value

reduces to the comparison of the r-superharmonic mappings characterized by

the integro-differential operators Gr and Ĝr. Since (Ĝru)(x) ≤ (Gru)(x) for

any sufficiently smooth convex function u : I 7→ R+ and (Ĝrv)(x) ≥ (Grv)(x)

for any sufficiently smooth concave function v : I 7→ R+, we find that the

findings of our Theorem 5.1 generate a natural ordering for the convex (concave)

solutions of the variational inequalities max{(Ĝru)(x), g(x) − u(x)} = 0 and

max{(Gru)(x), g(x)− u(x)} = 0.

We state next sufficient conditions for convexity of the value when the un-

derlying process is the slightly less general

Xt =
∫ t

0

µ(Xs)ds +
∫ t

0

σXsdWs +
∫ t

0

∫

S(m)

γ(z)XsÑ(dz, ds), (19)

where the diffusion and jump components are assumed to be linear in the state

variable. In this setting we can state sufficient conditions for the convexity of

the value function.

Theorem 5.2. Suppose that g and µ are convex functions, and that

rx− µ(x)

is increasing. Then the value function of the stopping problem is convex.

Proof. We denote Y 1
t := ∂Xt

∂x . By virtue of Theorem V.40 of Protter (2004), we
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can differentiate the flow Xt = Xx
t with respect to the initial state x to obtain

Y 1
t =

∫ t

0

µ′(Xx
s )Y 1

s ds +
∫ t

0

σY 1
s dWs +

∫ t

0

∫

S(m)

γ(z)Y 1
s Ñ(dz, ds),

which implies that

Y 1
t = exp

(∫ t

0

µ′(Xx
s )ds

)
Mt ≥ 0,

where

Mt = exp

(
σ

∫ t

0

dWs − 1
2
σ2t +

∫ t

0

∫

S(m)

ln(1 + γ(z))N(ds, dz)− λγt

)

is an exponential martingale independent of x and

γ :=
∫

S(m)

γ(z)m(dz).

Thus differentiating the mapping

Q(t, x) := E
[
e−rtg(Xx

t )
]

with respect to x yields

Qx(t, x) = E
[
exp

(
−

∫ t

0

(r − µ′(Xx
s ))ds

)
g′(Xx

t )Mt

]
≥ 0,

which as a function of x is increasing, being under our assumptions the product

of two non-negative and monotonically increasing functions. Thus Q(t, x) is an

increasing and convex function of x. Consequently, all elements of the increasing

sequence {Vk(x)}k∈N defined by

V0(x) = sup
t≥0

E
[
e−rtg(Xx

t )
]

Vk+1(x) = sup
t≥0

E
[
e−rtVk(Xx

t )
]

are increasing and convex. Furthermore, Vk(x) ↑ V (x). If α ∈ [0, 1] and x, y ∈ I,

then

αV (x) + (1− α)V (y) ≥ αVk(x) + (1− α)Vk(y)

≥ Vk(αx + (1− α)y)

for all k. By monotone convergence

αV (x) + (1− α)V (y) ≥ lim
k→∞

Vk(αx + (1− α)y) = V (αx + (1− α)y),

which implies the convexity of the value V .
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Theorem 5.2 states a set of conditions under which the sign of the rela-

tionship between increased volatility and the value of the considered optimal

stopping problem is unambiguously positive. It is worth noticing that along the

lines of the findings by Alvarez (2003) the monotonicity of the net appreciation

rate µ(x) − rx is the key factor determining how higher volatility affects the

optimal policy. The reason for this observation is naturally the fact that our

evaluations are based on the compensated compound Poisson process (which

is a martingale). If this were not the case, then the local expected behavior

of the underlying jump process would naturally have a constant effect on the

monotonicity requirement stated in Theorem 5.2.

Having characterized the impact of increased volatility on the optimal policy

and its value, it is naturally of interest to analyze how the jump-intensity λ

measuring the rate at which the downside risk is realized affects these factors.

Along the lines of our previous notation, we now consider two jump diffusions of

the form (4), X and X̂, which are otherwise identical but are subject to different

jump intensities, λ > λ̂. In line with this notation, we denote the values of

the associated optimal stopping problems again by Vλ and Vλ̂, the associated

differential operators by Gr and Ĝr, and the associated increasing fundamental

solutions (given that assumption A1 is satisfied) by ψλ and ψλ̂, respectively.

Our main characterization on the impact of increased jump intensity on the

value and the optimal policy is now summarized in our next theorem.

Theorem 5.3. Assume that the increasing fundamental solution ψλ(x) is con-

vex. Then
ψλ̂(x)
ψλ̂(y)

≤ ψλ(x)
ψλ(y)

for all x ≤ y. Hence,

ψλ̂(x) sup
y≥x

[
g(y)
ψλ̂(y)

]
≤ ψλ(x) sup

y≥x

[
g(y)
ψλ(y)

]

provided that the supremum exists. Moreover, if the conditions of Theorem 3.3

are satisfied, then Vλ(x) ≥ Vλ̂(x) and, therefore,

Cλ̂ = {x ∈ I : Vλ̂(x) > g(x)} ⊆ {x ∈ I : Vλ(x) > g(x)} = Cλ.
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If the increasing fundamental solution ψλ̂(x) is concave, then the inequalities

and inclusions stated above are reversed.

Proof. The assumed convexity of the increasing fundamental solution ψλ(x)

implies that ψλ(x + γ(x, z)) ≥ ψλ(x) + ψ′λ(x)γ(x, z) for any z ∈ S(m) and,

therefore, that

∫

S(m)

{ψλ(x + γ(x, z))− ψλ(x)− ψ′λ(x)γ(x, z)}m(dz) > 0.

Consequently, we observe that

(Ĝrψλ)(x) = (λ̂− λ)
∫

S(m)

{ψλ(x + γ(x, z))− ψλ(x)− ψ′λ(x)γ(x, z)}m(dz) < 0

for all x ∈ I. Applying now Dynkin’s theorem to ψλ(x) then finally proves that

ψλ̂(x)/ψλ̂(y) ≤ ψλ(x)/ψλ(y) for x ≤ y. The rest of the alleged results then

follow from the nonnegativity of the payoff g(x) and Theorem 3.3. Establish-

ing the reverse conclusions in the case where ψλ̂(x) is concave is completely

analogous.

Theorem 5.3 characterizes how the direction of the impact of increased jump-

intensity λ on the optimal stopping policy and its value can be unambiguously

determined when the fundamental solution is convex (concave). Along the lines

of our findings on the impact of increased volatility, we observe that higher jump-

intensity also slows down (speeds up) rational exercise by expanding (shrinking)

the continuation region when ψ(x) is convex (concave). This result is econom-

ically important, since it essentially states that if the value is convex on the

continuation region where exercising is suboptimal, then the combined impact

of downside risk and systematic market risk on the exercise incentives of rational

investors is unambiguously negative.

6 Explicit Illustrations

In this section our objective is to illustrate our main findings within explicitly

parametrized examples based on different descriptions for the underlying sto-

chastic dynamics. As usually, we first illustrate our findings for the arithmetic
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Lévy process and the geometric Lévy process since in those cases the repre-

sentation obtained in the analysis of our previous sections is valid. We then

extend our findings to cover also two other solvable cases: namely the constant

elasticity of variance case and a logistic jump-diffusion case.

6.1 Arithmetic Stochastic Dynamics

In the arithmetic case

dLt = µdt + σdWt +
∫

(0,∞)

γzÑ(dt, dz)

(with γ < 0 so that X2 holds) I = R and a sufficient condition for assumption

X1 to hold is µ + γλm > 0. The associated integro-differential equation

1
2
σ2ψ′′(x) + (µ + γλm)ψ′(x)− (r + λ)ψ(x) + λ

∫

(0,∞)

ψ(x + γz)m(dz) = 0 (20)

has an increasing solution ek1x where k1 > 0 solves

1
2
σ2k2 + (µ + γλm)k + λ

∫

(0,∞)

eγzkm(dz)− (r + λ) = 0. (21)

In light of our general observations we find that for any reward function g satis-

fying conditions g1 and Ag2, and such that e−k1xg(x) has a unique maximizer

x∗ ∈ R and is non-increasing for x > x∗, the value of the optimal stopping

policy can be represented as

V (x) = ek1x sup
y≥x

{
e−k1yg(y)

}
=





g(x), x ≥ x∗

g(x∗)ek1(x−x∗), x < x∗,
(22)

where x∗ is the unique maximizer of g/ψ, i.e. for a differentiable g the solution

of Dx[ln g(x)] = k1. It is also worth pointing out that in accordance with the

findings of our Theorem 4.1 we now find that the root k1 ∈ (k̃1, k̂1), where

k̂1 = −µ + γλm̄

σ2
+

√(
µ + γλm̄

σ2

)2

+
2(r + λ)

σ2

denotes the positive root of the characteristic equation σ2k2 + 2(µ + γλm)k =

2(r + λ), and

k̃1 = −µ + γλm̄

σ2
+

√(
µ + γλm̄

σ2

)2

+
2r

σ2
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denotes the positive root of the characteristic equation σ2k2+2(µ+γλm)k = 2r.

Consequently, we observe that in the present setting

ek̃1x sup
y≥x

{
e−k̃1yg(y)

}
≤ ek1x sup

y≥x

{
e−k1yg(y)

} ≤ ek̂1x sup
y≥x

{
e−k̂1yg(y)

}

provided that the maximum exists. Moreover, given that in the present case

ψ̃θ(x) = eKθx, where

Kθ = −µ + γλm̄

σ2
+

√(
µ + γλm̄

σ2

)2

+
2θ

σ2

we observe that argmax{e−k1yg(y)} = argmax{e−Kθyg(y)} whenever the iden-

tity

θ = r + λ

∫

(0,∞)

(1− eγzk)m(dz) (23)

holds. This observation is important since it demonstrates that in the present

case both the value as well as the optimal stopping rule of the optimal stop-

ping problem (3) of the underlying jump diffusion coincides with the value and

stopping rule of the associated stopping problem of a continuous diffusion by

properly adjusting the discount rate. Hence, our results indicate that whenever

the value of the optimal policy admits the representation (22) the jump-risk can

be viewed as a discount rate effect as characterized by the identity (23). More

precisely, whenever the value of the optimal policy admits the representation

(22) we have that Ṽθ(x) = V (x) by choosing the discount rate according to the

identity (23).

It is worth noticing that according to our general results the strict convexity

of the increasing fundamental solution ek1x implies that increased volatility σ

as well as higher jump-intensity λ increases the value of the optimal stopping

policy and raises the optimal boundary at which the underlying jump-diffusion

should be stopped. To see that this is indeed the case consider the mapping

P̄ (λ, σ, k) = (µ + γλm)k +
1
2
σ2k2 + λ

∫

(0,∞)

eγzkm(dz)− (r + λ).

Standard differentiation yields that P̄σ(λ, σ, k) = σk2 > 0 and

P̄λ(λ, σ, k) =
∫

(0,∞)

{eγzk − 1 + γkz}m(dz) > 0.
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Therefore, the inequality P̄ (λ, σ, 0) = −r < 0, the limiting condition P̄ (λ, σ, k) ↑
+∞ as k → ∞, and the strict convexity of the function P̄ (λ, σ, k) imply that

∂k1/∂σ < 0 and ∂k1/∂λ < 0 and, therefore, that ∂ek1(x−y)/∂σ > 0 and

∂ek1(x−y)/∂λ > 0 for all x ≤ y.

As a numerical illustration, consider the capped option reward function

g(x) = max{0, p min(K, x)− qK},

where we assume p > q > 0 and K ≤ p
p−q

1
k1

=: K0 to guarantee that g/ψ

is maximized at K (if K > K0, the maximizer is an interior point of (0,K),

see Alvarez (1996) for a detailed analysis and interpretation in the continuous

setting). As stated, in this case g/ψ attains a unique maximum value at x∗ = K,

which is a point of nondifferentiability for g. Assumption g1 is now satisfied

and if Ag2 holds, the value of the optimal stopping problem is

V (x) = ek1x sup
y≥x

{
e−k1yg(y)

}
=





(p− q)K, x ≥ K

ek1(x−K)(p− q)K, x < K

(24)

This is a continuous function, but its derivative has a discontinuity at x∗:

lim
x→x∗−

V ′(x) = k1(p− q)K > 0 = lim
x→x∗+

g′(x) = lim
x→x∗+

V ′(x),

and there is no smooth pasting. The graphs of the reward function, the function

g/ψ and the value and its derivative for p = 1, q = 0.5, r = 0.04, µ = 0.075,

σ = 0.1, λ = 0.1, γ = −0.5, and K = 0.75 · K0 (implying that k1 = 1.1463

and K0 = 1.7447) are shown in Figure 1 (for these values it can be checked

numerically that Ag2 holds).

6.2 Geometric Stochastic Dynamics

Geometric processes have been of paramount importance in mathematical fi-

nance for several decades, with the most extensively used and well-known in-

stance being the geometric Brownian motion St = s0 exp{µt + σWt}, where

σ > 0 and W is a standard Wiener process. During the last decade, a consider-

able amount of research has been done on geometric Lévy models

Yt = y0 exp{αt + σWt + Jt}, (25)
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Figure 1: The reward function g, the function g/ψ, the value function V and

the derivative of the value V ′ for the capped option case

where in addition to the deterministic drift and the Gaussian component there

is a jump process Jt in the exponent.

A geometric Lévy process Y = {Yt} with a finite Lévy measure ν = λm is a

jump diffusion whose dynamics are given by

dYt = Yt−

{
αdt + σdWt + λ

∫

S(m)

γ(z)(N(dt, dz)− ν(dz)dt)

}
, (26)

where both the drift α and the diffusion coefficient σ are assumed to be positive.

Note that in this case I = R+ and the explicit solution Yt equals

y0 exp
{

α̃t + σWt +
∫ t

0

∫

S(m)

ln(1 + γ(z))Ñ(ds, dz)
}

. (27)

where α̃ = α − 1
2σ2. To ascertain that X1 holds, we require that α̃ > 0.

For simplicity of exposition, we take γ(z) = −z and to guarantee that X2 is

satisfied, we assume S(m) ⊆ (0, 1). Furthermore, to ensure the finiteness of

the value of the optimal stopping problem, we need to impose the integrability

condition α− r < 0 (which is known in the literature on financial economics as
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the absence of speculative bubbles condition). The integro-differential operator

Gr takes now the form

1
2
σ2x2ψ′′(x) + α̂xψ′(x)− (r + λ)ψ(x) + λ

∫ 1

0

ψ(x− xz)m(dz) = 0, (28)

where α̂ = α + λm̄. By guessing now the solution to be of form xk, we obtain

the characteristic equation for k:

1
2
σ2k(k − 1) + (α + λm̄)k − (r + λ) + λ

∫ 1

0

(1− z)km(dz) = 0, (29)

If the integrability condition is satisfied, it is easy to show that this equation

has a solution k1 > 1, and thus ψ(x) = xk1 is an increasing smooth solution of

(28) which vanishes at x = 0. Hence assumption A1 is satisfied. In light of our

representation of the value of the optimal policy in terms of an associated non-

linear programming problem, we find that for any reward function g satisfying

conditions g1 and Ag2, and such that x−k1g(x) has a unique maximizer x∗ ∈ R
and is non-increasing for x > x∗, the value of the optimal stopping policy can

be represented as

V (x) = xk1 sup
y≥x

{
y−k1g(y)

}
=





g(x), x ≥ x∗

g(x∗)(x/x∗)k1 , x < x∗,
(30)

where x∗ is the unique maximizer of g/ψ, i.e. for a differentiable g the solution

of g′(x∗)x∗/g(x∗) = k1.

As in the arithmetic case, we observe that our Theorem 4.1 implies that in

the present case the root of the equation (29) k1 satisfies the condition k1 ∈
(k̃1, k̂1), where

k̂1 =
1
2
− α + λm̄

σ2
+

√(
1
2
− α + λm̄

σ2

)2

+
2(r + λ)

σ2

denotes the positive root of the characteristic equation σ2k(k−1)+2(α+λm̄)k−
2(r + λ) = 0 and

k̃1 =
1
2
− α + λm̄

σ2
+

√(
1
2
− α + λm̄

σ2

)2

+
2r

σ2

denotes the positive root of the characteristic equation σ2k(k−1)+2(α+λm̄)k−
2r = 0. To demonstrate this observation, consider the behavior of the function

P (λ, σ, k) =
1
2
σ2k(k − 1) + (α + λm̄)k − (r + λ) + λ

∫ 1

0

(1− z)km(dz).
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We first observe that

P (λ, σ, k̂1) = λ

∫ 1

0

(1− z)k̂1m(dz) > 0

and

P (λ, σ, k̃1) = λ

∫ 1

0

((1− z)k̃1 − 1)m(dz) < 0.

However, since P (λ, σ, 1) = α− r < 0 and P (λ, σ, k) is strictly convex on k > 1

we observe that k̃1 < k1 < k̂1 and, therefore, that

xk̂1 sup
y≥x

[
g(y)y−k̂1

]
≤ xk1 sup

y≥x

[
g(y)y−k1

] ≤ xk̃1 sup
y≥x

[
g(y)y−k̃1

]

provided that the maximum exists. Moreover, since in this case ψ̃θ(x) = xlθ ,

where

lθ =
1
2
− α + λm̄

σ2
+

√(
1
2
− α + λm̄

σ2

)2

+
2θ

σ2

we observe that argmax{y−k1g(y)} = argmax{y−lθg(y)} provided that the iden-

tity

θ = r + λ

∫ 1

0

(1− (1− z)k)m(dz) (31)

is satisfied. Along the lines indicated by our observations in the arithmetic case,

we again observe that the effect of jump-risk on valuation can be captured by

making an appropriate adjustment in the discount rate of the stopping prob-

lem of the associated continuous diffusion as is characterized by (31). Hence,

whenever the value of the optimal stopping problem (3) admits the representa-

tion (30) we have Ṽθ(x) = V (x) by choosing the discount rate according to the

identity (31).

It is also clear from our analysis that the increasing fundamental solution

is strictly convex in this case as well. Thus, as our results in Theorem 5.1 and

in Theorem 5.3 indicated, increased volatility and higher jump-intensity should

increase the value and decelerate exercise by increasing the optimal stopping

boundary. To see that this is indeed the case in the present example, we first

observe that Pσ(λ, σ, k) = σk(k − 1) > 0 for k > 1 and

Pλ(λ, σ, k) = m̄k − 1 +
∫ 1

0

(1− z)km(dz) = E[zk − 1 + (1− z)k].
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Since the function z 7→ zk− 1 + (1− z)k is strictly convex for k > 1 and attains

a minimum at z = 0, we observe that E[zk − 1 + (1 − z)k] > 0 and, therefore,

that Pλ(λ, σ, k) > 0 for all k > 1. Since the positive root k1 is attained on this

set and P (λ, σ, 1) = α − r < 0, we find that ∂k1/∂λ < 0 and ∂k1/∂σ < 0. An

interesting implication of this observation is that

∂

∂σ

(
x

y

)k1

> 0 and
∂

∂λ

(
x

y

)k1

> 0

for all x ≤ y. Consequently, we observe that both increased volatility as well as

higher jump-intensity increases the value of the problem and postpones exercise

by raising the threshold at which the underlying process should be optimally

stopped. Moreover, if the exercise payoff is continuously differentiable at the

exercise boundary x∗, then

∂

∂σ

[
g′(x∗)x∗

g(x∗)

]
=

∂k1

∂σ
< 0 and

∂

∂λ

[
g′(x∗)x∗

g(x∗)

]
=

∂k1

∂λ
< 0.

In other words, both increased volatility and higher jump intensity decreases

the elasticity of the exercise payoff at the optimal exercise threshold x∗.

For the sake of explicit illustration, we now consider the case of a linear

reward function in the geometric Lévy model. Let g(x) = max(ax − b, 0) with

a, b > 0. This case contains the standard American call option (take a = 1,

b = K), and also the rewards of optimal stopping problems associated with ir-

reversible investment decisions (see Boyarchenko (2004) for a very readable ac-

count on the relationship between perpetual American options and irreversible

investment decisions). Clearly, the increasing function g satisfies g1. The func-

tion g/ψ has a unique maximum in R+ and is non-increasing for argument values

larger than the maximizer, since the sign of

Dx

[
g(x)
ψ(x)

]
=

xk1−1(ax− (ax− b)k1)
x2k1

depends only on the linear decreasing function a(1 − k1)x + k1b, so Ag1 is

satisfied. If Ag2 is satisfied, then by theorem 3.3, the value of the optimal

stopping problem can now be represented as

V (x) = xk1 sup
y≥x

{
y−k1(ay − b)

}
=





ax− b, x ≥ x∗

(ax∗ − b)(x/x∗)k1 , x < x∗
(32)
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where x∗ = k1b
(k1−1)a is the unique maximizer of the function g(x)/ψ(x). As usu-

ally in the real options literature on irreversible investment, we notice that the

option multiplier M = k1/(k1−1) determines the comparative static properties

of the optimal exercise threshold x∗. In light of our findings this multiplier reads

M̃ = k̃1/(k̃1 − 1) and M = k̂1/(k̂1 − 1) for the stopping problems of the associ-

ated continuous diffusion. We illustrate these option multipliers in Figure 2 for

Beta(c, d)-distributed jumps under the assumption that α = 0.02, r = 0.035, λ =

0.01, a = b = 1, c = 1.25, d = 2. As Figure 2 indicates, the option multipliers
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Figure 2: The impact of volatility on the option multipliers M , M̃ , and M̂

are increasing as functions of the underlying volatility coefficient. Moreover,

the option multipliers satisfies the condition M ∈ (M̃, M̂) as was established in

our Theorem 4.1. The values of the optimal stopping problems are graphically

illustrated for Beta(c, d)-distributed jumps in Figure 3 under the assumption

that α = 0.02, r = 0.035, λ = 0.01, a = b = 1, c = 1.25, d = 2, σ = 0.1 (which

implies that x∗ = M = 2.95, x̂∗ = M̂ = 3.75, and x̃∗ = M̃ = 2.52) Figure 3

illustrates explicitly the results of our Theorem 4.1 for the values of the stopping

problems. It is of interest to notice that as was predicted by Theorem 4.1, the

value V (x) of the considered stopping problem is sandwiched between the two

values Ṽr+λ(x) and Ṽr(x).
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Figure 3: The exercise payoff (x− 1)+ and the values V (x), Ṽr(x), and Ṽr+λ(x)

Consider next the concave reward function g(x) = max(ln x, 0). Then func-

tion g satisfies g1 and g/ψ has a unique maximum in R+ and is non-increasing

for argument values larger than the maximizer, since the sign of

Dx

[
g(x)
ψ(x)

]
=

1− k1 ln x

xk1+1

depends only on the decreasing function 1− k1 ln x, so Ag1 is satisfied. If Ag2

is satisfied, by theorem 3.3, the value of the optimal stopping problem can now

be represented as

V (x) = xk1 sup
y≥x

{
y−k1 ln y

}
=





ln x, x ≥ exp{1/k1}

xk1

[
1

ek1

]
, x < exp{1/k1}

(33)

where x∗ = exp{1/k1} is the unique maximizer of the function g(x)/ψ(x). As

was predicted by our Theorem 5.1 we find that under the assumption r > α

we have ∂x∗/∂σ = −(x∗/k2
1)∂k1/∂σ > 0 and ∂x∗/∂λ = −(x∗/k2

1)∂k1/∂λ > 0.

Hence, both increased volatility as well as higher jump-intensity decelerate op-

timal exercise by raising the optimal exercise boundary in this case as well. It

is, however, worth noticing that in the present example the maximizing thresh-

old x∗ exists even when k1 < 1, that is, even when the fundamental solution

is not convex as a function of the state. Hence, for the exercise payoff g(x) =
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max(ln x, 0) the condition r > α can be relaxed. If 0 < r ≤ α then k1 ∈ (0, 1]

since in that case P (λ, σ, 0) = −r < 0 and P (λ, σ, 1) = α− r ≥ 0. Under those

circumstances the sign of the relationship between increased volatility and the

optimal exercise strategy is reversed as the root k1 becomes an increasing func-

tion of volatility. More precisely, if r ≤ α then ∂x∗/∂σ = −(x∗/k2
1)∂k1/∂σ < 0

and ∂x∗/∂λ = −(x∗/k2
1)∂k1/∂λ < 0. We illustrate this observation graphi-

cally for Beta(c, d)-distributed jumps in Figure 4 under the assumption that

α = 0.04, r = 0.02, λ = 0.01, a = b = 1, c = 1.25, and d = 2. Figure 4 illustrates
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Figure 4: The impact of volatility on the exercise thresholds 1/k1, 1/k̃1, and

1/k̂1

how the sign of the relationship between increased volatility and the optimal

exercise threshold is reversed as the increasing fundamental solution becomes

concave. It is worth noticing that even in this case the order of the exercise

thresholds remain naturally unchanged since the ordering of the values V (x),

Ṽr+λ(x), and Ṽr(x) is based only on nonnegativity and monotonicity.
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6.3 Constant Elasticity of Variance

Consider the Constant Elasticity of Variance (CEV) model with an added jump

component

dSt = St

{
rdt + σS−α

t dWt −
∫ 1

0

zÑ(dz, dt)
}

, (34)

where α ∈ (0, 1) is a known exogenously determined constant, and suppose that

the first exit time τ(0,x) < ∞ for any x ∈ R+. Note that the deterministic drift is

now set equal to the discount rate r. We assume the reward to be of logarithmic

utility type: g(x) = max(ln x, 0). The associated integro-differential equation is

now

1
2
σ2x2(1−α)ψ′′(x) + (r + λm)xψ′(x) + λ

∫ 1

0

ψ(x− xz)m(dz) = (r + λ)ψ(x), (35)

which has an increasing solution ψ(x) = x, as can easily be verified. Now

assumptions X1, X2 and A1 are clearly satisfied. Since the reward is of log

utility type, we also have for x > 1

Dx[g(x)/ψ(x)] =
1− ln x

x2
,

whose sign depends on the decreasing function 1 − ln x; the unique maximizer

is x∗ = e and assumption Ag1 is satisfied. If Ag2 holds, by theorem 3.3, the

value of the optimal stopping problem has the representation

V (x) = x sup
y≥x

{
ln y

y

}
=





ln x, x ≥ e

x
e x < e

(36)

as the unique maximum of ln x/x is x = e. It is worth noting that in this

case we could not have taken a linear g(x) as then Ag1 is no longer satisfied.

Due to our specific choice of parameters, the optimal value and the threshold are

independent of the parameter values. For the associated diffusion, the increasing

fundamental solution ψ̃θ(x) of the characteristic differential equation can be

expressed as

ψ̃θ(x) = xF1

(
1
2α

(
1− θ

r + λm

)
, 1 +

1
2α

,
−r − λm

ασ2
x2α

)
,
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where F1(a, b, z) is the Kummer confluent hypergeometric function. Notice that

the solution depends on the values of parameters. As a numerical illustration,

consider the case (r, λ, m, σ, α) = (0.035, 0.1, 0.2, 0.1, 0.75). In this case x̃∗ ≈
1.54 and x̂∗ ≈ 4.79.

6.4 Logistic Jump Diffusion

In order to illustrate how Theorem 3.4 can be applied in the analysis of the

stopping problem consider a stochastic process X such that the ratio X/(1−X)

evolves as a geometric Lévy process, i.e.

Gt :=
Xt

1−Xt
=

x

1− x
exp

{
(µ− 1

2
σ2)t + σWt +

∫ t

0

∫

(0,1)

zÑ(ds, dz)
}
. (37)

Note that X lives on I = (0, 1). Being a C2 function of a jump diffusion,

Xt = f(Gt) = Gt/(1 + Gt) is also a jump diffusion and application of Itô

formula yields the dynamics of X:

dXt = (1−Xt)Xt{µ + λm−Xtσ
2 + C(Xt)

1−Xt
}dt + σ(1−Xt)XtdWt+

+Xt

∫
(0,1)

{
1−z

1−zXt
− 1

}
Ñ(dt, dz),

(38)

where C(x) =
∫
(0,1)

{ 1−z
1−zx −1}ν(dz) arises from compensating the driving jump

process in (38). Thus the integro-differential equation associated with the opti-

mal stopping problem for X is

(1− x)xα(x)ψ′(x) +
1
2
σ2(1− x)2x2ψ′′(x) +

∫

(0,1)

ψ(x + xc(x))ν(dz) = r̃ψ(x), (39)

where α(x) = µ + λm− xσ2 and c(x) = 1−z
1−zx − 1. Via transformation ψ̃(y) :=

ψ( y
y+1 ) equation (39) transforms into the following integro-differential equation:

1
2
σ2y2ψ̃′′(y) + (µ + λm)ψ̃′(y) +

∫

(0,1)

ψ̃(y − yz)ν(dz) = r̃ψ̃(y), (40)

which has an increasing solution ψ̃(y) = yk1 , where k1 is the positive root of

equation

1
2
σ2k(k − 1) + (µ + λm)k +

∫

(0,1)

(1− z)kν(dz) = r̃.

Then by theorem 3.4 φ(x) := ( x
1−x )k1 is an increasing solution of equation

(39), and furthermore φ(0) = 0. Since the process X by virtue of theorem
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3.4 satisfies assumptions X1 and X2, theorem 3.3 implies that for any reward

function g satisfying assumptions g1 and Ag1–Ag2

V (x) =
(

x

1− x

)k1

sup
y≥x

{
g(y)(1− y)k1

yk1

}

=





g(x), x ≥ x∗

g(x∗)
(

x(1−x∗)
x∗(1−x)

)k1

x < x∗

(41)

where x∗ again satisfies the logarithmic derivative condition.

As a numerical illustration, consider a bull spread type reward (where 0 <

K1 < K2 < 1)

g(x) = max{0, x−K1} −max{0, x−K2}

in a logistic jump diffusion model with parameters

(µ, σ, γ, λ, r, a, b, c, d, K1,K2) = (0.1, 0.3,−1, 0.1, 0.15, 1, 1, 1.5, 1, 0.4, 0.6)

and Beta(c, d) distributed jumps ( m(dz) = (1/β(c, d))zc−1(1−z)d−1dz ). These

values lead to k1 = 1.2591, and an increasing solution of the characteristic

equation for the logistic process is given by ψ(x) =
(

x
1−x

)k1

. Thus

g(x)
ψ(x)

=





(
1−x

x

)k1 (K2 −K1), x > K2

(
1−x

x

)k1 (x−K1), K1 < x ≤ K2

0, x ≤ K1,

and this is decreasing for x > K2 and has a unique maximum at

x∗ =
1− k1

2
+

1
2

√
(1− k1)2 + 4k1K1 > 0,

provided that K1 ≤ x∗ ≤ K2 (in the case x∗ > K2 it is optimal to stop at

K2 and the value will not exhibit smooth pasting; for x∗ < K1, the value will

be identically zero). By Theorems 3.3 and 3.4, for K1 ≤ x∗ ≤ K2 the value

function is given by

V (x) =





max{0, x−K1} −max{0, x−K2}, x ≥ x∗

(x∗ −K1)
(

x(1−x∗)
x∗(1−x)

)k1

, x < x∗,
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provided that Ag1 and Ag2 are satisfied. For the given parameters, Ag1 holds,

we have x∗ = 0.59185 and we can establish numerically that Ag2 holds. The

value function is presented graphically in Figure 5.

To illustrate Theorem 5.1, consider the process X̂ with parameters identical

to those of X except that the volatility coefficient σ̂ = 0.4 > 0.3 = σ. We can

compute k̂1 = 1.21464 and x̂∗ = 0.59793 > 0.59185 = x∗. This is in line with

the theorem, and the value V̂ (x) is depicted in Figure 5.
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Figure 5: The impact of volatility on the value

7 Conclusions

In this study we generalized a representation result known to hold for continuous

linear diffusions to include a class of spectrally one-sided Lévy diffusions: given

some conditions, the optimal stopping problem for a one-dimensional spectrally

negative Lévy diffusion can be reduced to an ordinary nonlinear programming

problem. As the proof of our representation relied on the viscosity solution ap-

proach, differentiability is not required, and we are able to deal with nonsmooth

reward functions as well. The class of processes for which the representation
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holds, contains the standard arithmetic and geometric Lévy processes. We es-

tablished that the class is closed with respect to strictly increasing C2 trans-

forms, although the transform naturally changes the set of allowable reward

functions.

Considering the fact that optimal stopping problems feature prominently in

pricing of American options and in real options theory, reducing the stopping

problem of a Lévy diffusion into a standard programming problem can signif-

icantly facilitate the ongoing research on these areas of mathematical finance.

We demonstrated this by deriving several interesting comparative static prop-

erties of spectrally negative Lévy diffusions using our representation, and found

out that a useful tool in obtaining bounds for the value of the optimal stopping

of a Lévy diffusion is the corresponding stopping problem for an associated con-

tinuous diffusion. By choosing the discount rates appropriately (namely, as r

and r+λ), we were able to sandwich the value of the jump diffusion problem be-

tween the values of two optimal stopping problems of this continuous diffusion.

In fact, our findings indicate the existence of a critical discount rate θ∗ such

that the value and the threshold of the stopping problem of the jump diffusion

with discount rate r coincide with the value and the threshold for the stop-

ping problem of the associated diffusion with discount rate θ∗. Furthermore, it

turned out that the impact of volatility on the optimal policy and its value in

our setting is similar to the continuous case: for values convex (concave) below

the optimal threshold, increased risk decelerates (accelerates) rational invest-

ment by expanding or leaving unchanged (shrinking or leaving unchanged) the

continuation region and increasing or leaving unchanged (decreasing or leav-

ing unchanged) the optimal threshold and the value of waiting. The impact

of downside risk as measured by the intensity of the compound Poisson jump

process on the optimal value was found out to be similar to the impact of the

diffusion risk (as measured by the volatility). We also established that the key

factor determining the relevant convexity/concavity properties of the value is

(provided that it exists) the increasing fundamental solution of the associated

integro-differential equation, which is process-specific. Thus we saw that the
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impact of volatility or downside risk is not dependent on the precise form of the

exercise payoff, as long as the conditions for the optimality of the stopping rule

characterized by a single threshold are met.

Motivated by our views on the importance of taking into account the down-

side risk, we concentrated our attention on the spectrally negative case with an

increasing reward. However, the corresponding results can (with obvious modi-

fications) be shown to hold for spectrally positive Lévy diffusions and decreasing

reward functions.

In addition to their usefulness in obtaining information about the compar-

ative static properties of Lévy diffusions and their relations (similarities and

differences) to the continuous diffusion case, our results raise a few interesting

questions. Firstly, it would be of interest to obtain precise knowledge on the

scope of applicability of our representation. This boils largely down to the ques-

tion: when is the assumption on the existence of an increasing smooth solution

to the characteristic integro-differential equation true, and can conveniently ver-

ifiable sufficient conditions for this be found? Secondly, could a more convenient

(i.e. analytically verifiable) substitute for our condition Ag2 be derived, and if

so, how generally applicable this substitute would be? The answers to these

rather difficult questions, however, are outside the scope of the present study,

and are therefore left for future research.
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model. Proceedings of the Steklov Mathematical Institute 237, 256–264.

Mordecki, E., 2002b. Optimal stopping and perpetual options for Lévy processes.
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